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ABSTRACT

In the preparation of the 2023 IHP thematic program "Random Processes in the Brain" the question came up 
how relevant the single-neuron model is for cortical dynamics and function. Given the plethora of single-neuron 
models available, insight into their differential effects on the network level would give theoreticians guidance on 
which model to choose for which research question. The purpose of this talk is to outline a small project 
approaching this question which could be carried out in the framework of the thematic program in a 
collaboration of several labs. The talk first presents a well-studied full-density network model of the cortical 
microcircuit as a suitable reference network. The proposal is to replace the original single-neuron model by 
alternative common single-neuron models and to quantify the impact on the network level. For this purpose the 
presentation reviews a range of common single-neuron models as candidates and a set of measures like firing 
rate, irregularity, and the power spectrum. It seems achievable that all relevant neuron models can be 
formulated in the domain-specific language NESTML and data analysis be carried out in the Elephant 
framework such that a reproducible digital workflow for the project can be constructed. A minimal scope of the 
investigation covers a static network in a stationary state. However, there are indications in the  literature that 
the conventional constraints on network activity are weak. Furthermore, hypotheses on the function of the 
cortical microcircuit depend on the transient interaction between cortical layers, synaptic plasticity, and a 
separation of dendritic and somatic compartments. Therefore, we need to carefully debate how the scope of an 
initial exploration can usefully be restricted.
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OUTLINE
 model of cortical microcircuit as building block
 critique of network model

 open network models as research platforms 

 benchmark for neuromorphic computers

 potential network model extensions

 alternative single neuron models

 metrics of network activity

 limitations of predictive power of network model

 beyond the stationary state

 potential project design

 references
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FROM NEURAL COMPUTATION TO NEUROMORPHIC COMPUTING

 modern AI (Deep Learning) excels on tasks with many examples
 but, brains are unbeaten on many natural tasks:
 learning from few examples
 eye-hand coordination (robotics)

 modern AI algorithms are optimized for present day computers
 dramatic difference in energy consumption:
 brain: 20 W
 supercomputer: 2 Megawatt (2,000,000 W)

 end of Moore’s law

understanding brain function

novel computers using principles of the brain

Lin et al. (2003) J Neurophys

http://www.imaging-git.com

Nerve Cell

Transistor

40 
m

20nm
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DYNAMIC ELEMENTS ARE NOT THE PROBLEM

Lin et al. (2003) J Neurophys

http://www.imaging-git.com

Nerve Cell

Transistor

40 
m

20nm

 size of neurons: 10-100 µm
 size of modern transistor: 10-100 nm

 in 2d, 1 million transistors fit into 1 neuron
 number of neurons in cortex: about 1010

 number of transistors in modern microprocessor
(Intel Broadwell-E5):  about 1010
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CHALLENGE IS DENSITY OF WIRING

 100,000 neurons per cubic millimeter
 10,000 synapses per neuron
 3 km of axons per cubic millimeter
 densely packed
 in this volume all neurons touch 

 difficulty:

realization of  natural density connectivity

Braitenberg & Schuez (1991)
20 
m
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NEOCORTEX 
a universal computational architecture

 nature employs the same local 
circuitry (microcircuit) across:
 different species (mouse, ..., men)
 different functional areas (visual, 

auditory, …, motor)

(DeFelipe, 2011)
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 similarities more striking than differences
 functional specificity arises from 
 specific connectivity between
 subcortical and cortical areas
 cortical areas

NEOCORTEX 
a universal computational architecture

(DeFelipe, 2011)(Budd & Kisvarday, 2012)
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HISTORY OF CORTICAL MICROCIRCUITS

 “canonical” cortical circuits Douglas & Martin 2004

 model of sleep and wakefulness with interactions between multiple microcircuits Hill & Tononi 2005

 single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts Traub et al. 2005

 laminar information processing in a computational model with data-based connectivity Haeusler & Maass 2006

 canonical microcircuits for predictive coding Bastos et al. 2012

 stochastic computations in cortical microcircuit models Habenschuss et al. 2013

 microcircuits with minicolumnar organization and attractor dynamics e.g., Lansner et al. 2013

 full-scale point neuron network model with rule-based connectivity Potjans & Diesmann 2014

 full-scale data-based multi-compartment neuron network model Markram et al. 2015

Martin 2002 illustrating the 
idea of Hubel & Wiesel (a) 
and  the importance of 
local recurrence (b)
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INTERACTIONS BETWEEN NEURONS

 current injection into pre-synaptic neuron causes 
excursions of membrane potential

 supra-threshold value causes spike transmitted to 
post-synaptic neuron

 post-synaptic neuron responds with small excursion 
of potential after delay

 inhibitory neurons (20%) cause negative excursion

 each neuron receives input from 
10,000 other neurons

 causing large fluctuations of 
membrane potential

 emission rate of 1 to 10 spikes per 
second
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LOCAL CORTICAL MICROCIRCUIT
taking into account layer and neuron-type specific connectivity 
is sufficient to reproduce experimentally observed: 

 asynchronous-irregular spiking of neurons
 higher spike rate of inhibitory neurons
 correct distribution of spike rates across layers
 integrates knowledge of more than

50 experimental papers

105 neurons
109 synapses

available at: 
www.opensourcebrain.org
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BUILDING BLOCK FOR FURTHER STUDIES
 used in 40 peer-reviewed studies
 cited in 166 peer-reviewed publications
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CRITIQUE OF LOCAL NETWORK MODEL
a network of networks with at least three levels of organization:

 neurons in local microcircuit models are missing 50% of synapses
 e.g., power spectrum shows discrepancies, slow oscillations missing
 solution by taking brain-scale anatomy into account 
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SLOW FLUCTUATIONS THROUGH METASTABILITY

dynamical slowing near instability

 Schmidt et al. (2018) Brain Struct Func
 Schmidt et al. (2018) PLOS Comput Biol
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V1 SPIKING STATISTICS

data of Chu et al. (2014) 
from all layers in V1

comparison of power spectra and rate distributions between simulation and experiment

simulations with              
weak (red),  medium 
(black/gray),   strong (blue)                
cortico-cortical interactions

experiment
simulation
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SIMULATION TECHNOLOGY: THE NEST INITIATIVE
collaborative effort and community building

Major goals:
systematically publish new simulation technology
produce public releases under GPL

network simulator of

 origins in 1994, registered society (since 2012)
 teaching at international tutorials and advanced courses:
 Okinawa Computational Neuroscience Course OCNC, OIST, Japan
 Latin American School on Computational Neuroscience LASCON, Brazil
 annual NEST Conference, Ås, Norway 
 Computational Neuroscience CNS by OCNS, Melbourne (virtual)
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MANY MODELS – ONE SIMULATION ENGINE

 enables use of validated and optimized simulation code

…

…

concrete mathematical model JOINT PLATFORM
simulation engines
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FOR SOME MODELS  – SEVERAL SIMULATION ENGINES

…

simulation engines
concrete mathematical model

 enables cross-validation of results at highest level

JOINT PLATFORM
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NEUROMORPHIC COMPUTING

SpiNNaker, ManchesterBrainScaleS, Heidelberg

 idea to build computers according to principles of the brain
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BENCHMARKING OF NEUROMORPHIC SYSTEMS

 4 year project
 started in EU BrainScaleS
 close collaboration with Manchester
 full-density model on SpiNNaker achieves real time 

(Rhodes et al. (2019), Phil Trans R Soc A, 378:20190160)

[Potjans & Diesmann (2014) Cerebral Cortex]

[2022-05-17]
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ACCURACY AND TIME- AND ENERGY-TO-SOLUTION

 runs cortical microcircuit accurately
 largest network on SpiNNaker
 breakthrough: larger networks less dense 
 uses less than 1% of SpiNNaker system
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SIMULATION TECHNOLOGY

[2020-01-21]

105 neurons
109 synapses
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MANY-CORE SYSTEMS

NUMA 1 NUMA 2

AMD EPYC 128 Cores

Source: Jülich / INM-6

IB HDR100 Direct Link

 dual socket AMD EPYC Rome 7702: 
128 cores, 2GHz, 256GB RAM
 2 nodes, IB HDR 100 link
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REACHING REAL TIME

 Run cortical microcircuit with NEST on recent conventional compute node

 Use real-time factor            to assess performance and measure consumed energy 

 Observe super-linear scaling and sub realtime performance on single compute node

 NEST exhibits competitive performance at low energy costs

Kurth et al. (2022) 
Neuromorph Comput 
Eng  2 021001
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MEAN-FIELD THEORY OF THE MODEL

Power spectra:

Firing rates:

Figures from Layer et al.

 Theory developed in

Bos, Diesmann, and Helias (2016)
PLOS CB (https://doi.org/10.1371/journal.pcbi.1005132)

 Implementation available as part of the

Neuronal Network Mean-field Toolbox NNMT
(https://github.com/INM-6/nnmt)

presented in

Layer, Senk, Essink, van Meegen, Bos, and Helias (accepted)
Frontiers in Neuroinformatics
(https://doi.org/10.3389/fninf.2022.835657)

Preprint available at:
https://www.biorxiv.org/content/10.1101/2021.12.14.472584v1
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CRITIQUE VSTRIPES, ISOLATED V1 AS IMPROVED MODEL

 original microcircuit exhibits population 
synchronization at ~64Hz and >300 Hz visible as 
stripes in raster plot and peaks in power spectra

 microcircuit with up-to-date connectivity of isolated V1 
from MAM-model does not show oscillatory behavior
 neuron density increased
 synaptic density kept constant

 → weaker coupling
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MICROCIRCUIT WITH INHIBITORY CELL TYPES
 Distinct cell properties and connectivity (e.g. different targets and STP)

 Fast-spiking, non-adapting PV interneurons 

 Facilitating inhibition with SOM interneurons as source 

 Disinhibitory VIP interneurons

Jiang, H. J., & van Albada, S. J. (2019). A Cortical Microcircuit Model with 
Three Critical Interneuron Groups. In Bernstein Conference Abstract Booklet.
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ALTERNATIVE SINGLE NEURON DYNAMICS
Model Model name in NEST

LIF coba synapses iaf_cond_exp

AdEx coba synapses aeif_cond_exp

HH point-neuron model hh_psc_alpha
Izhikevich izhikevich
MAT2 mat2_psc_exp
GLIF class (Allen Institute) glif_psc
GIF spike-response model (Gerstner) gif_psc_exp
Galves-Loecherbach under construction

 many models can be expressed  in domain specific language NESTML (Plotnikov et al. 2016)
 exposes differences in formal definitions
 supports build-up of a catalogue of models

neuron iaf_psc_exp:
state:

V_m mV = 0 mV

equations:
shape G = exp(-t / tau_syn)
V_m' = -V_abs / tau_m

+ (I_ext + convolve(G, spikes)) / C_m

update:
integrate_odes()
if V_abs >= V_threshold:

V_abs = 0 mV
emit_spike()
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ALTERNATIVE SINGLE NEURON DYNAMICS

 Izhikevich model

 Implemented in NEST:

 izhikevich
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ALTERNATIVE SINGLE NEURON DYNAMICS

 GLIF model

 Implemented in NEST:

 glif_psc

 glif_cond
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ALTERNATIVE SINGLE NEURON DYNAMICS

 MAT model

 Implemented in NEST:

 mat2_psc_exp

 winner of International Competition on Quantitative Single-Neuron Modeling 
[INCF 2009], Gerstner & Naud 2009
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ALTERNATIVE SINGLE NEURON DYNAMICS

 Galves-Loecherbach model

 team already working on NEST implementation (Galves, Pouzat, Linssen, Babu, Shimoura…)

 spiking in this model can be stochastic (delta model with escape noise)
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WHAT ARE RELEVANT METRICS?

 distribution of spikes rates

 distribution of correlation coefficients

 single spike train irregularity (CV ISI)

 network synchrony

 power spectrum of neuronal activity

 functional metrics:
 Haeussler & Maass 2006
 separability

Limitations
 large amounts of data may be required for higher-order measures (Dasbach et al. 2021)

 prominent measures already captured by mean field theories (Bos et al. 2016, Dasbach et al. 2021)

 neglect any dendritic computation and plasticity
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DISTRIBUTED SYNAPTIC WEIGHTS

 weight quantization preserving synaptic input statistics preserves overall firing statistics
 microcircuit model with sufficiently heterogeneous in-degrees: firing statistics preserved even when replacing 

all normally distributed weights (reference) by the mean weight 
 metrics FR, CV, and CC are not sufficient to constrain weight distribution
 practical consequence: substantial reduction of memory demands in simulations possible

firing rates spike train irregularity spike correlation

31 May 2022 NeuroMat Page 35



new dynamical state between
loss of linear stability and onset 
of chaos with optimal memory

CHAOS AND MEMORY IN RATE NETWORKS

Schuecker, Goedeke, Helias (2018) Optimal Sequence Memory in Driven Random Networks, Phys Rev X

nonlinear network:

continuous in time continuous in value

“rate network”

31 May 2022 NeuroMat Page 36



SPIKING INTERACTION
Taking into account discrete coupling

binary, all-or-nothing signal

Binary neurons
(kinetic noneq. 
Ising model)
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NEURON MODEL INDEPENDENT FIELD THEORY
... uncovers equivalent activity statistics in  binary and stochastic rate networks

self-consistency equation for autocorrelation function Q
(dynamical MFT)

Effective noise:

same statistics of 
fluctuations in 
binary and 
stochastic rate nets!
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CHAOS IN BINARY NETWORKS
1. Mutually exclusive regimes.

2. Limited chaotic attractor.

3. No critical slowing down.Binary Rate

Time Time

Keup, Kuehn, Dahmen, Helias (2021) Transient Chaotic Dimensionality Expansion by Recurrent Networks. Phys Rev X

Differences to rate 
nets:
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DECORRELATION CURVE
Inter-class distance increases compared to intra-class distance

Page 40

mixing dominated

expansion
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DECORRELATION CURVE
Inter-class distance increases compared to intra-class distance
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COMPLEXITY DISTRIBUTION

 Complexity distribution is a 
measure to evaluate synchrony 
in network activity

asynchronous irregularsynchronous irregular

Grün, S., Abeles, M. & Diesmann, M. 
Impact of Higher-Order Correlations on 
Coincidence Distributions of Massively 
Parallel Data. Lecture Notes in Computer 
Science 5286, 96–114 (2008)

Brunel, N. Dynamics of sparsely 
connected networls of excitatory and 
inhibitory neurons. Computational 
Neuroscience 8, 183–208 (2000)
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RESPONSE TO TRANSIENT INPUTS
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RESPONSE TO TRANSIENT INPUTS

 T = -0.4

 T = +0.4
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HYPOTHESIS ON CORTICAL FLOW OF ACTIVITY

 handshaking between layers

Potjans TC & Diesmann M (2014) The cell-type specific 
connectivity of the local cortical network explains prominent 
features of neuronal activity. Cerebral Cortex  24 (3): 785-806
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FIT OF PARAMETERS, VALIDATION FRAMEWORK

● Development and implementation of 
stochastic optimization algorithm

● Implementation of data comparison framework 
with NetworkUnit (Gutzen et al. Front 
Neuroinform 2018)

● Proof of concept successfully run, applying the 
parameter estimation to synthetic data from a 
small balanced random network

Aitor 
Morales-
Gregorio

 some prior work on CUBA vs COBA comparison: Cavallari et al. 2014 

Robin 
Gutzen
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POTENTIAL PROJECT DESIGN
 agree on a specific variant of the network model

 agree on a dynamical state of the model as a reference

 agree on a set of metrics to fit to reference (rates, irregularity, correlation)

 agree on whether we want to go into cell type specific models or not

 assign interested researchers or groups to specific neuron models

 use Elephant and Validation Framework for consistent analysis

 Juelich and the SimLabs at Juelich and NeuroMat help with NEST implementations of the 
neuron models and use of the analysis software

 agree on further metrics to expose differences (complexity, transients, chaos, function)

 communicate over the year to sort out problems 

 gather in March 2023 and discuss the results in Paris
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