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ABSTRACT

In the preparation of the 2023 IHP thematic program "Random Processes in the Brain" the question came up
how relevant the single-neuron model is for cortical dynamics and function. Given the plethora of single-neuron
models available, insight into their differential effects on the network level would give theoreticians guidance on
which model to choose for which research question. The purpose of this talk is to outline a small project
approaching this question which could be carried out in the framework of the thematic program in a
collaboration of several labs. The talk first presents a well-studied full-density network model of the cortical
microcircuit as a suitable reference network. The proposal is to replace the original single-neuron model by
alternative common single-neuron models and to quantify the impact on the network level. For this purpose the
presentation reviews a range of common single-neuron models as candidates and a set of measures like firing
rate, irregularity, and the power spectrum. It seems achievable that all relevant neuron models can be
formulated in the domain-specific language NESTML and data analysis be carried out in the Elephant
framework such that a reproducible digital workflow for the project can be constructed. A minimal scope of the
investigation covers a static network in a stationary state. However, there are indications in the literature that
the conventional constraints on network activity are weak. Furthermore, hypotheses on the function of the
cortical microcircuit depend on the transient interaction between cortical layers, synaptic plasticity, and a
separation of dendritic and somatic compartments. Therefore, we need to carefully debate how the scope of an
initial exploration can usefully be restricted.
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OUTLINE

= model of cortical microcircuit as building block
= critique of network model

= open network models as research platforms

= penchmark for neuromorphic computers

= potential network model extensions

= alternative single neuron models

= metrics of network activity

= [imitations of predictive power of network model
= peyond the stationary state

= potential project design

= references

IJ JULICH

Member of the Helmholtz Association 31 I\/Iay 2022 NeuroMat Page 3 Forschungszentrum



PEOPLE

this review

= Sacha van Albada

=  Simon Essink

= Moritz Helias

= Cordula Huesgen

= Hanjia Jiang

= Alexander Kleinjohann
= Anno Kurth

= Renan Shimoura

=  Tom Tetzlaff

Member of the Helmholtz Association

31 May 2022 NeuroMat

Page 4

nest::
simulated()

Pooja Babu

Jochen Eppler

Steffen Graber
Tammo Ippen
Susanne Kunkel

Anno Kurth

Charl Linssen

Jessica Mitchell

Hakon Mork

Abigail Morrison

Hans Ekkehard Plesser
Jari Pronold

Jonas Stapmanns
Dennis Terhorst

Stine Brekke Vennemo

Stefan Rotter
Sebastian Spreizer
Benjamin Weyers

lJ JULICH

Forschungszentrum



FROM NEURAL COMPUTATION TO NEUROMORPHIC COMPUTING

= modern Al (Deep Learning) excels on tasks with many examples
= put, brains are unbeaten on many natural tasks:

= Jearning from few examples

= eye-hand coordination (robotics) 25 |

understanding brain function

= modern Al algorithms are optimized for present day computers
= dramatic difference in energy consumption:

= Dprain: 20 W
= supercomputer: 2 Megawatt (2,000,000 W)

= end of Moore’s law —
ransistor
novel computers using principles of the brain http://www.imaging-git.com
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DYNAMIC ELEMENTS ARE NOT THE PROBLEM

®  size of neurons: 10-100 pm
= size of modern transistor: 10-100 nm

®" in 2d, 1 million transistors fit into 1 neuron
= number of neurons in cortex: about 1010

®= number of transistors in modern microprocessor
(Intel Broadwell-E5): about 1010
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Lin et al. (2003) J Neurophys

Transistor
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CHALLENGE IS DENSITY OF WIRING

= 100,000 neurons per cubic millimeter
®= 10,000 synapses per neuron

= 3 km of axons per cubic millimeter

= densely packed

® in this volume all neurons touch

= difficulty:

realization of natural density connectivity

Braitenberg & Schuez (1991)
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NEOCORTEX

a universal computational architecture

Porpoise

= pature employs the same local
circuitry (microcircuit) across:

= different species (mouse, ..., men)

= different functional areas (visual,
auditory, ..., motor)

Rabbit ; -
@ Squirrel monkey

Mouse
(o] =

African lion

Rhesus monkey

(DeFelipe, 2011)
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NEOCORTEX

a universal computational architecture

= similarities more striking than differences
= functional specificity arises from
= specific connectivity between
= subcortical and cortical areas
= cortical areas

Tracer-based connectivity DSl-based connectivity
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HISTORY OF CORTICAL MICROCIRCUITS
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(a) (b)

Y

o L e Martin 2002 illustrating the
idea of Hubel & Wiesel (a)
and the importance of

local recurrence (b)

“canonical” cortical circuits Douglas & Martin 2004
model of sleep and wakefulness with interactions between multiple microcircuits Hill & Tononi 2005

single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts Traub et al. 2005
laminar information processing in a computational model with data-based connectivity Haeusler & Maass 2006

canonical microcircuits for predictive coding Bastos et al. 2012

stochastic computations in cortical microcircuit models Habenschuss et al. 2013

microcircuits with minicolumnar organization and attractor dynamics e.g., Lansner et al. 2013

full-scale point neuron network model with rule-based connectivity Potjans & Diesmann 2014

full-scale data-based multi-compartment neuron network model Markram et al. 2015 ‘ ' J U L I c H
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INTERACTIONS BETWEEN NEURONS

__invitro
~ol 11

| 0 50 100 150 200 250

V. (mV
V  (mV)

0 50 100 150 200 250
t (ms)

= current injection into pre-synaptic neuron causes
excursions of membrane potential

= supra-threshold value causes spike transmitted to
post-synaptic neuron

= post-synaptic neuron responds with small excursion
of potential after delay

= inhibitory neurons (20%) cause negative excursion

Member of the Helmholtz Association 31 May 2022 NeuroMat Page 11

IN VIVO

100 200 300 400 500
t (ms)

each neuron receives input from
10,000 other neurons

causing large fluctuations of
membrane potential

emission rate of 1 to 10 spikes per
second
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LOCAL CORTICAL MICROCIRCUIT

taking into account layer and neuron-type specific connectivity
IS sufficient to reproduce experimentally observed:

7 i<

RSN

= asynchronous-irregular spiking of neurons

= higher spike rate of inhibitory neurons (}Q’“ D 7
FANS

= correct distribution of spike rates across layers

" ntegrates knowledge of more than
50 experimental papers

The Cell-Type Specific Cortical 10° neurons
Microcircuit: Relating Structure and 10° synapses
Activity in a Full-Scale Spiking Network
Model &

Tobias C. Potjans &, Markus Diesmann

thalamo-cortical input

&

Cerebral Cortex, Volume 24, Issue 3, 1 March 2014, Pages 785-806, aval | able a-t

https://doi.org/10.1093/cercor/bhs358 WWW. Ope nsou rcebrai n . Orq
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http://www.opensourcebrain.org/

BUI
LDING BLOCK FOR FURTHER STUDIES

. .
- g:gg in 40 peer-reviewed studies
in 166 peer-reviewed publications
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AESEARCH ARTICLE

A multi-scale Iayer-resolved spiking netwo rk
model of resting-state dynamics in macagque
visual cortical areas
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The Computationa\ Properties of a Simy ' J
Cortical Column Model ‘ ]

rain Structure and Function

Brain Structure And FUBES

april 2018, Volume 2723, Issue 3, PP 1409-1435 | Clte 2s

Multi-scale account of the network structure of macaque visual

RESEARCH ARTCLE

cortex

Nicholas Cain, Aamakrishnan Iyer, Chrigtol Koeh, Stetan Mihalas®

Authors Authors and affiliations
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Maximitian schmidt = Rembrandt Bakker, Claus C. Hilgeiag.

Warkus Diesmann, gacha J.van Albada

| .@ P LOS \ E?JLPO%T\,ATIO AL

Gehwalger T, Deger M, Gerstoer W. PLoS Comput Biol. 2017:13(4):6100550

trehive

& frontiers
in Computational Neurgscience

ORIGINAL RESEARCH ARTICLE

Front. Comput, Newross

A Computational Anatysis of the Function of Three

Inhibitory Cell Types in Contextual Visual Processing Towards a theory of cortical columns: From spiking neurons

to interacting neural pupulmi{ms of finite size

Christof Hoch and 1 Stefan Mihatas”

Jung H. [
Tilo Rd'hw:llg\-r". . Maritz Deger', Wallram Gerstner',

model

| smer insutune 14 arain Science, Seaite. WA ush

1 Brain aind Institute. School of Computer and (‘.ammuuical'wn Sciences
and School of Life Sciences, Ecole Palytechnique Fédérale de Law
(EPFL), Lansanne, Switzerla nd

2 Tnstitute for Foology: Faculty of Mathematics and Natnral Sriences,

University af Cologne. Cologne, Germany
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CRITIQUE OF LOCAL NETWORK MODEL

a network of networks with at least three levels of organization:

(__,_.—:_7—\\
functional circuit

\onS 1 ms delay

Human cortex:

10%° neurons

10'* synapses

= neurons in local microcircuit models are missing 50% of synapses
= e.g., power spectrum shows discrepancies, slow oscillations missing
= solution by taking brain-scale anatomy into account

Forschungszentrum
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SLOW FLUCTUATIONS THROUGH METASTABILITY

L2/3

L4

L5

L6
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dynamical slowing near instability

= Schmidt et al. (2018) Brain Struct Func
= Schmidt et al. (2018) PLOS Comput Biol
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V1 SPIKING STA

[ISTICS
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SIMULATION TECHNOLOGY: THE NEST INITIATIVE

collaborative effort and community building

Major goals:
o = systematically publish new simulation technology
nest :: produce public releases under GPL

£
network simulator of EH? Human Brain Project

= origins in 1994, registered society (since 2012)
= teaching at international tutorials and advanced courses:

Okinawa Computational Neuroscience Course OCNC, OIST, Japan
Latin American School on Computational Neuroscience LASCON, Brazil
annual NEST Conference, As, Norway

Computational Neuroscience CNS by OCNS, Melbourne (virtual)

JULICH
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MANY MODELS — ONE SIMULATION ENGINE

concrete mathematical model

eMeuro

) socer i

A
SR Neoroscince

e | Trsoryew Goneszs Sensary s Mukr Sysems

OXFORD

Dependent Connectivity

Activity Dynamics and Signal Representatic
in a Striatal Network Model with Distance- ~ Proprioceptive Feedback through a

Setastan Spretzar, Martn Angehuoer Jyotica Bauguna. Ad ASrtzan, ans Arvind Kumar

-

¢

frontiers
in Neuroscience

Neuromoerphic Engineering

" ORIGINALRESEARCH ARTICLE

)

Front. Neurosci, 14 June 2017 | hup

Neuromorphic Muscle Spindle Model

Arsicle Navization

The Cell-Type Specific Cortical Microcircuit:

Relating Structure and Activity in a Full-Scale

Spiking Network Model &

Tobras C. Potjans 8, Markus Diesmanr

Carcbral Corter, Voluma 24, ksue 3, 1 March 2014, Pagos T85-80%, https://doiorg
101083 /oercor bhad38

Published: 0Z December 2012

GPLOS s

@ Lorenzo Vannuci', ] Egidio Falotico and F¥l Cecilia Laschi

Browse Publish  About *™ '8V

On the stability and dynamics of stochastic spiking neuron

models: Nonlinear Hawkes process and point process GLMs

@ Springer Link search @ mMenu ¥

Journal of Computational Neuroscience
December 2017, Volume 43, lssue 3, pp 173-147 | Cite as | = |

Disrupted cholinergic

modulation can underlie abnormal

gamma rhythms in schizophrenia and

auditory hallucination

Authars Authars and affiliations

Jung Hoon Lee =

@PLOS CONEITRICHA Browse Publish  About

Excitable neuronal assemblies with adaptation as a building
block of brain circuits for velocity-controlled signal
propagation

ersion 2

= enables use of validated and optimized simulation code
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simulation engines
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FOR SOME MODELS — SEVERAL SIMULATION ENGINES

concrete mathematical model JOINT PLATFORM
| simulation engines

The Cell-Type Specific Cortical Microcircuit:
Relating Structure and Activity in a Full-Scale
Spiking Network Model 3

Tobias C. Potjans =, Markus Diesmann

nest::

W—Z — * PyNN > NEURON
=, =

s spiNNaker
e 4 ’

Cerebral Cortex, Volume 24, Issue 3, 1 March 2014, Pages 785-806, https://doi.org
/10.1093/cercor/bhs358
Published: 02 December 2012

= enables cross-validation of results at highest level
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NEUROMORPHIC COMPUTING

= idea to build computers according to principles of the brain

BrainScaleS, Heidelberg SpiNNaker, Manchester

4 )
& 1% Human Brain Project
b '

IJ JULICH
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ORIGINAL RESEARCH
published: 23 May 2018
doi: 10.3389/fnins.2018.00291

Performance Comparison of the
Digital Neuromorphic Hardware
SpiNNaker and the Neural Network
Simulation Software NEST for a
Full-Scale Cortical Microcircuit
Model

Sacha J. van Albada™, Andrew G. Rowley?, Johanna Senk, Michael Hopkins?,
Maximilian Schmidt 3, Alan B. Stokes?, David R. Lester?, Markus Diesmann *** and
Steve B. Furber?

! Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA Institute Brain
Structure-Function Relationships (INM-10), Jilich Research Centre, Jilich, Germany, © Advanced Processor Technologios
Group, School of Computer Science, University of Manchester, Manchester, United Kingdom, * Laboratory for Neural Circuit
Theory, RIKEN Brain Science Institute, Wako, Japan, * Department of Physics, Faculty 1, RWTH Aachen University, Aachen,
Germany, * Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University;
Aachen, Germany

¢ o
Q,_IP Human Brain Project

= 4 year project
= started in EU BrainScaleS
= close collaboration with Manchester

= full-density model on SpiNNaker achieves real time
(Rhodes et al. (2019), Phil Trans R Soc A, 378:20190160)
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BENCHMARKING OF NEUROMORPHIC SYSTEMS
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thalamo-cortical input
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ACCURACY AND TIME- AND ENERGY-TO-SOLUTION

A grid-based NEST

1 2

precise NEST

2

SpiNNaker
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= runs cortical microcircuit accurately
= largest network on SpiNNaker
= preakthrough: larger networks less dense
{reat time Tl ey = uses less than 1% of SpiNNaker system
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SIMULATION TECHNOLOGY

ORIGINAL RESEARCH
published: 23 May 2018
doi: 10.3389/fnins.2018.00291

Performance Comparison of the
Digital Neuromorphic Hardware
SpiNNaker and the Neural Network
Simulation Software NEST for a

:n“;'(;glca' GPUs Outperform Current HPC and
worns e, NEUromorphic Solutions in Terms of
secarner | Speed and Energy When Simulating a

! Institute of Neuroscience al

et Highly-Connected Cortici o, osopical

Group, School of Computer

Gmery Dagrimat o TRANSACTIONS A

Aachen, Gormany James C. Knight* and Thomas Nowotny

Centre for Computational Neuroscience and Robotics, School of Engineering and Il rgtg. royalsocietypubl i shing .org

United Kinadom

? frontiers
in Neuroscience

Research 8 CrossMark

click for updates

Article submitted to journal
Simulating the Cortical Microcircuit
Significantly Faster Than Real Time Subi _
ubject Areas:
on the IBM INC-3000 Neural Neuromorphic Computing,
Su percomputer Computational Neurosicence, Spiking

Amne Heittmann'", Georgia Psychou’, Guido Trensch#, Charies E. Cox?, Neural Networks, Massively-Parallel
P . : ) )
Winfried W. Wilcke*, Markus Diesmann*** and Tobias G. Noll Computing, Event-Driven Processing

JARA-Institute Grean IT (PGI-10), Jiifich Ressarch Centre, Jdiich, Germany, * Simulation and Data Laboratory
Neurosciancs, Jilich Supsrcomputing Cantre, Instituts for Advanced Simelation, Jilich Resaarch Centrs, Jich, Germany,

Real-Time Cortical Simulation
on Neuromorphic Hardware

7277

7

background input

Oliver Rhodes', Luca Peres', Andrew G.
D. Rowley', Andrew Gait!, Luis A. Plana!,
Christian Brenninkmeijer', and Steve B.

Furber'

Ipepartment of Computer Science, University of
Manchester, Manchester, UK

Real-time simulation of a large-scale biologically
representative spiking neural network is presented,
through the use of a heterogeneous parallelisation
scheme and SpiNNaker neuromorphic hardware, A
published cortical microcircuit model is used as a
benchmark test case, representing =~ 1 mm? of early
sensory cortex, containing 77k neurons and 0.3 billion
synapses. This is the first true real-time simulation

7 IBM Rassarch Division, Almaden Research Cantar, San Jose, CA, Unitad States, * Institute of Neuroscience and Medicing Keywo rds:

(INM-8, institute for Advanced Simulation (1AS5-E), and JARA Institute Brain Structure-Function Relationships (iINM-10),

Jilich Research Canire, Jtlich, Germany, * Dapartment of Physics, Faculty 1, FWTH Aachen University, Aschen, Garmany, Neuromorphic, SpiNNaker, Cortical
© Dapartment of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen,

Garmany r
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MANY-CORE SYSTEMS

®  dual socket AMD EPYC Rome 7702:
128 cores, 2GHz, 256GB RAM

= 2 nodes, IB HDR 100 link

. AMD EPYC 128 Cores “
Fyry Fry
Fy Fr

lJ JULICH
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REACHING REAL TIME

= Run cortical microcircuit with NEST on recent conventional compute node

= Use real-time factor

T

to assess performance and measure consumed energy

= QObserve super-linear scaling and sub realtime performance on single compute node

= NEST exhibits competitive performance at low energy costs

RTF Egn—event (1))  References

6.29 4.39 2018, NEST [2]

2.47 9.35 2018, NEST [2]

26.08 0.30 2018, GeNN [3]

1.84 0.47° 2018, GeNN [3]

1.00 0.60 2019, SpiNNaker [8]

1.06 - 2021, NeuronGPU [9]
Kurth et al. (2022) 0.70 — 2021, GeNN [10]
Neuromorph Comput  0.67 0.33 NEST, AMD EPYC Rome (one node, 2 MPI)
Eng 2021001 0.53 0.48 NEST, AMD EPYC Rome (two nodes, 4 MPI)

*Value estimated by the authors.
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MEAN-FIELD THEORY OF THE MODEL

Firing rates: = Theory developed in

I msimulation
¢ theory

-~
1

Bos, Diesmann, and Helias (2016)
PLOS CB (https://doi.org/10.1371/journal.pcbi.1005132)

w
1

rate v(1l/s)

w
|

=
|

* |mplementation available as part of the
2/3E 2/31 4E 4] 5E 51 6E 6l

Power spectra: Neuronal Network Mean-field Toolbox NNMT
2 4 5E 6F (https://github.com/INM-6/nnmt)

— simulation avg.
— prediction

=
=)
&

presented in

._.
o
&

power spectrum P{w) (1/s?)
o

Layer, Senk, Essink, van Meegen, Bos, and Helias (accepted)
Frontiers in Neuroinformatics

(https://doi.org/10.3389/fninf.2022.835657)
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._.
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&

o Preprint available at:
https://www.biorxiv.org/content/10.1101/2021.12.14.472584v1

I I I
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frequency w/2m (1/s)

Figures from Layer et al.
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https://doi.org/10.1371/journal.pcbi.1005132
https://github.com/INM-6/nnmt
https://doi.org/10.3389/fninf.2022.835657
https://www.biorxiv.org/content/10.1101/2021.12.14.472584v1

CRITIQUE VSTRIPES, ISOLATED V1 AS IMPROVED MODEL

original isolated V1

= original microcircuit exhibits population
synchronization at ~64Hz and >300 Hz visible as
stripes in raster plot and peaks in power spectra 23F

23E

23l

® microcircuit with up-to-date connectivity of isolated V1 = **
from MAM-model does not show oscillatory behavior

4E

« neuron density increased aE
« Synaptic density kept constant
. — weaker coupling . .
E =
original isolated V1 6E 51

6E

6l 6l

power
power

3000 3010 3020 3030 3040 3050 3000 3010 3020 3030 3040 3050
time t(ms) time t(ms)

100 200 300 400 500 100 200 300 400 500
frequency w/2n(Hz) frequency w/2n(Hz)
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MICROCIRCUIT WITH INHIBITORY CELL TYPES

u Distinct cell properties and connectivity (e.g. different targets and STP)

= Fast-spiking, non-adapting PV interneurons

= Facilitating inhibition with SOM interneurons as source

u Disinhibitory VIP interneurons

Jiang, H. J., & van Albada, S. J. (2019). A Cortical Microcircuit Model with
Three Critical Interneuron Groups. In Bernstein Conference Abstract Booklet.

L2137
LA R
L5 - ‘4
L6 e g A “:;.i.,, iw&iuh"
1900 1950 2000 2050 2100
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ALTERNATIVE SINGLE NEURON DYNAMICS

Model

Model name in NEST

LIF coba synapses

laf_cond_exp

AdEXx coba synapses

aeif_cond_exp

HH point-neuron model hh_psc_alpha
Izhikevich izhikevich
MAT?Z2 mat2_psc_exp
GLIF class (Allen Institute) glif_psc

GIF spike-response model (Gerstner) |gif _psc_exp

Galves-Loecherbach

under construction

neuron iaf_psc_exp:
state:
V_mmV =0 mV

equations:
shape G = exp(-t / tau_syn)
V.m"'" = -V_abs / tau m

+ (I_ext + convolve(G, spikes)) / Cm

update:
integrate_odes()
if V_abs >= V_threshold:
V_abs = 6 mV
emit_spike()

= many models can be expressed in domain specific language NESTML (Plotnikov et al. 2016)
= exposes differences in formal definitions
= supports build-up of a catalogue of models

Member of the Helmholtz Association 31 May 2022 NeuroMat Page 29
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ALTERNATIVE SINGLE NEURON DYNAMICS

+—— peak 30 my
; 2 iz e e
v'=0.04v+5v+140-u+| 02s| «TSTC . -
- . u'=a(bv -u) e g
= |zhikevich model s | E
. vit) E 0.2 fie o
if v=30mV, el N @ > 2 T FSLTSRZ CH
thenv-c, u-u+d W g 21 8 3
ult) 159 0os| oG
sensitivity b o 0g2 0.1 -B5 -55  -50
parameter a parameter ¢
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003
reqgular spiking (RS} intrinsically bursting (1B) chattering (CH) fast sp|k|ng
Simple Model of Spiking Neurons
Eugene M. Izhikevich
|
t |
v(t) ) L/ J s _|
IE) T o] = 1
u I m p I eme nted |n N EST thalamo-cortical (TC) thalamo-cortical (TC) resonator (RZ) low-threshold spiking (LTS)

= izhikevich

-683 mv

JJLUJJJJMML
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ALTERNATIVE SINGLE NEURON DYNAMICS

"=  GLIF model

DOI: 10.1038/541467-017-02717-4 .

OPEN

Generalized leaky integrate-and-fire models
classify multiple neuron types

Corinne Teeter(® ', Ramakrishnan lyer® !, Vilas Menon'2, Nathan Gouwens', David Feng® !, Jim Berg!,

Aaron Szafer!, Nicholas Cain

1, Hongkui Zeng', Michael Hawrylycz', Christof Koch® ! & Stefan Mihalas® '

= Implemented in NEST:

= glif_psc

= glif cond

Member of the Helmholtz Association 31 May 2022 NeuroMat Page 31

1 After-spike currents (ASC)
o le

———— Membrane potential reset (R)

1) v
W) Spike?
Thresht?id
adaptation | 6,1 |
(TA)
Ot)
T Threshold reset (R)

Htr3a Ctgf

WCummW
J,u_u_i_J_,x,L,w,Ly ol LI Ll

100 pA b 20mV
100 ms

//////////////’ GLIF,
I //’/

RlllddaadiarnT _ —
_fJ./Jf/J..rf..//_/.ff/f R+ ASC /_____......- ..... .___
//////////////GLIF P
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ALTERNATIVE SINGLE NEURON DYNAMICS

= MAT model . tt
‘|‘ T Adaptive Threshold
Spike Predictor
tailor-mad

{frontiers in ORIGINAL RESEARCH ARTICLE Non-Resetting )
COMPUTATIONAL NEUROSCIENCE o 10:B36mewo 0002000 G |:> Leaky Integrator |:>

: (ready-made) :
Made-to-order spiking neuron model equipped with a SIS GLimE model potential

multi-timescale adaptive threshold

B C
Ryota Kobayashi'’, Yasuhiro Tsubo?" and Shigeru Shinomoto**

e | A
PN e A A A o E
o oy 1 A Lt ¥ b 1%

! Departrment o f Hurman and Computer Intel i fgena? R.'rs‘umeikan University, . Shiga, Japan ¥ '-'Ih fh".\f'l"l'"-.l "'r‘""%ﬁ r ¥ b w v ol W v I —
¢ Laboratory r r Neural Circi Theor H‘E.KENB in Science Institute, Saitama, Japan RS

? Dapartment of Physic: (‘ aduate School of Scia Kyn Iniversity, Kyoto, Japan RS ~

‘O‘LJ\-J‘\H—"L_,.,.,.- J‘“ﬂﬂl\r'L.me-uok I E

] d ' i 0 ] E

5“%?
f

_IB$ ""“L"“""""‘""“" i i r
= |Implemented in NEST: is‘¢ A KA
TR I N R R FS
"  mat2_psc_exp IO 3000 e DL e ’UK"L:’UL‘:’LL
100 ms 20 ms

= winner of International Competition on Quantitative Single-Neuron Modeling
[INCF 2009], Gerstner & Naud 2009

IJ JULICH
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ALTERNATIVE SINGLE NEURON DYNAMICS

10001001100 11 o0fo 1 0 ol]
m -
Galves-Loecherbach model L0011 000100011 oltoo of
J Stat Phys (2013) 151:896-921 110 0 110 01 1 0 0|1 0f(1]0 o ofpf]
DOI 10.1007/s10955-013-0733-9 1 ¢ o 1 1 0 O 1 1 0 O 1 |0 O0J0O 1 0 O D
011001 0 000 0010 0]f1 0o o zf[]
1 100110 010 01100 0o o o]
Infinite Systems of Interacting Chains with Memory 00001100100 010 011 0 off]

of Variable Length—A Stochastic Model for Biological
Neural Nets

Prob( () {Xklt] = ax} ‘ X[—oco:t — 1]) = ][ Prob (Xk[t] = ay

ke K ke K

X[m[t]:t —1] )

A. Galves . E. Locherbach

= team already working on NEST implementation (Galves, Pouzat, Linssen, Babu, Shimoura...)

= gpiking in this model can be stochastic (delta model with escape noise)

JULICH
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WHAT ARE RELEVANT METRICS?

= distribution of spikes rates

= distribution of correlation coefficients
= single spike train irregularity (CV 1SI)
= network synchrony

= power spectrum of neuronal activity

=  functional metrics:
" Haeussler & Maass 2006
= separability

Limitations

= Jarge amounts of data may be required for higher-order measures (Dasbach et al. 2021)

= prominent measures already captured by mean field theories (Bos et al. 2016, Dasbach et al. 2021)

JULICH

Forschungszentrum

=  neglect any dendritic computation and plasticity l '
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DISTRIBUTED SYNAPTIC WEIGHTS

I 1 I I
2/3E 2/31
mm reference

m— Npins =1

p (a.u.)

:‘ frontiers
in Neuroscience Neuromorphic Engineering

Nyins =2

- O © CUEIED

p (a.u.)

ORIGINAL RESEARCH article

eurcscl, 24 December 2021 | bt

Dynamical Characteristics of Recurrent Neuronal
Networks Are Robust Against Low Synaptic Weight
Resolution

p (a.u.)

Stefan Dasbach'™", [J] Tom Tetzlaff', {ff Markus Diesmann’** and [[J Johanna Senk ;
g
Q
0 10 2I0 0 10 20 0.5 1.0 0.5 1.0 0 0.01 0 0.01
FR (spikes/s) FR (spikes/s) Ccv Cv CcC CC
firing rates spike train irregularity spike correlation

« Wweight quantization preserving synaptic input statistics preserves overall firing statistics
« microcircuit model with sufficiently heterogeneous in-degrees: firing statistics preserved even when replacing
all normally distributed weights (reference) by the mean weight
. metrics FR, CV, and CC are not sufficient to constrain weight distribution
« practical consequence: substantial reduction of memory demands in simulations possible 9 JU LICH
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CHAOS AND MEMORY IN RATE NETWORKS

N
_ dx;(t
nonlinear network: 1 C;E ) _ —x; (t) + Z Wi (x;(t)) + & (t)
\ T
E continuous in time continuous in value

“rate network”

new dynamical state between
loss of linear stability and onset
of chaos with optimal memory

coupling strength

input strength

Schuecker, Goedeke, Helias (2018) Optimal Sequence Memory in Driven Random Networks, Phys Rev X

@) JULICH
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SPIKING INTERACTION

Taking into account discrete coupling

«— binary, all-or-nothing signal

0.2 "

N
0.1}
4 ol _
0 50 100 150 200 250
t (ms)

Member of the Helmholtz Association 31 May 2022 NeuroMat

Binary neurons 1O
(kinetic noneq.
Ising model)

0

Page 37

500

time # (ms)
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NEURON MODEL INDEPENDENT FIELD THEORY

... uncovers equivalent activity statistics in binary and stochastic rate networks

self-consistency equation for autocorrelation function Q
W (dynamical MFT)
' 2~ /
7°Q (At) == Vg o0 (Q (At))

Effective noise:

5h ) S Ja] GREELE

; |
-c% =0 same statistics of
D o fluctuations in
5315 binary and
9 stochastic rate nets!
—> T o c L0

At [T]

@) JULICH
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CHAOS IN BINARY NETWORKS

Differences to rate 1. Mutually exclusive regimes.
nets:

2. Limited chaotic attractor.

Binary 3. No critical slowing down.

1
8 .
n?

Decorrelation
Decorrelation

Keup, Kuehn, Dahmen, Helias (2021) Transient Chaotic Dimensionality Expansion by Recurrent Networks. Phys Rev X

UJ JULICH
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DECORRELATION CURVE

Inter-class distance increases compared to intra-class distance

X A . i
9 .'ﬁ-\_,, // / S i

| % I . :

A T4 o expansion |
N/~ 3 dominated i
S :

()] I

""""""" mixing dominatedi

Time

lJ JULICH
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DECORRELATION CURVE

Inter-class distance increases compared to intra-class distance

|

/ accuracy
S O
o U

0 10
5 10
time [t]

Time

IJ JULICH
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COMPLEXITY DISTRIBUTION

counts 90 -

inhibitory

excitatory -

synchronous irregular

m ,a._.;;%%*ﬁ

ri?-f': -':' ' : *

asynchronous irregular
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=  Complexity distribution is a
measure to evaluate synchrony
in network activity

Grin, S., Abeles, M. & Diesmann, M.
Impact of Higher-Order Correlations on
Coincidence Distributions of Massively
Parallel Data. Lecture Notes in Computer
Science 5286, 96-114 (2008)

Brunel, N. Dynamics of sparsely
connected networls of excitatory and
inhibitory neurons. Computational
Neuroscience 8, 183-208 (2000)
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RESPONSE TO TRANSIENT INPUTS

Member of the Helmholtz Association
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RESPONSE TO TRANSIENT INPUTS
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HYPOTHESIS ON CORTICAL FLOW OF ACTIVITY

23 7/ \\ | /

SEAL

— feed-forward
— feedback

&.\/

input/output
W excited state
¥ inhibited state

time

Member of the Helmholtz Association 31 May 2022 NeuroMat
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handshaking between layers

Potjans TC & Diesmann M (2014) The cell-type specific
connectivity of the local cortical network explains prominent
features of neuronal activity. Cerebral Cortex 24 (3): 785-806
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Forschungszentrum



FIT OF PARAMETERS, VALIDATION FRAMEWORK

\

Initial Anatomical
parameter sets data
f Optimization Algorithm
- L2L framework
Simulation
New
[ Generate network parameter sets
v
[ Simulate
N Mutate ]
/E\mluzllmn v S%H Selected
parameter sets
Spike train
features 1
# [ Select ]
[ Score :
\ 7 new generation

J

Brain activity
data

|
Y

All evaluated
parameter sets

A A

| Best sets [«

[ Validate ]*

= some prior work on CUBA vs COBA comparison: Cavallari et al. 2014

Member of the Helmholtz Association
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C
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é Pl‘l * é 08'
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0.4 Aitor .
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0.6 0 50 100 . Gutzen
o Generations Gregorio
0.2
O,
02| 4 ety sets . Development and implementation of
4 Target stochastic optimization algorithm
0.04 parameter set
. " . Implementation of data comparison framework
4 A ¢ A 05 S with NetworkUnit (Gutzen et al. Front
0.0 , 00 Neuroinform 2018)
027 ok o o . Proof of concept successfully run, applying the
0.0 _ _ parameter estimation to synthetic data from a
00 02 00 02 00 02 00 02 small balanced random network
Pee Pe P Py
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POTENTIAL PROJECT DESIGN

= agree on a specific variant of the network model

= agree on a dynamical state of the model as a reference

= agree on a set of metrics to fit to reference (rates, irregularity, correlation)
= agree on whether we want to go into cell type specific models or not

= assign interested researchers or groups to specific neuron models

= use Elephant and Validation Framework for consistent analysis

= Juelich and the SimLabs at Juelich and NeuroMat help with NEST implementations of the
neuron models and use of the analysis software

= agree on further metrics to expose differences (complexity, transients, chaos, function)
= communicate over the year to sort out problems

= gatherin March 2023 and discuss the results in Paris

IJ JULICH
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